Exercises from The Rising Sea

Holonomy

August 29, 2025

1 Chapter 2

Lemma 1. Let A: I — C be a diagram in a category C, and let B: J — C be another diagram factoring
through A.

I-45¢
“T%
J

Then the factoring « induces a map on the colimits, if they exist.
lim B(j) — colim A(:
G BU) = cofp AW

Proof. Consider any co-cone Z € C over A in C. We can write such a co-cone as a natural transformation 7
from A to the composition I — x — C, where * is the discrete single object category, * — C selects the
object Z, and I — * of course takes all objects to the single object.

1N\

I—>C

Note that the components of such a transformation are n;: A(i) — Z, satisfying, for each i — j in T,

AG) 2L Z

A(j) — 7

This is precisely the definition of a co-cone. However, we can then take the composition v = 7 % id,, which

naturally describes Z as a co-cone over B.

J%I%C

Thus, if Z is any co-cone over A, and the colimit over B exists, then there is a unique map from said colimit to
Z by universality.
Taking Z to be the co-cone over A proves the lemma. O

Lemma 2. Let A, B : I — C be two diagrams in a category C, and let n: A = B be a natural transformation
between them. Then n induces a map on the colimits, if they exist.

colim A(7) —» colim B(i)
i€l i€l

Proof. Let Z be any co-cone over the diagram B, written as a natural transformation € as in the previous

lemma.
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The composition € o ) then describes Z as a co-cone over the diagram A as well.
If the diagram A has a colimit, then it must admit a map to this cocone Z by universal property. Thus, if Z is
assumed to be the colimit of B, we have induced a map from the colimit of A to the colimit of B as desired. [

Let Ox be the pre-sheaf of smooth real-valued functions on X = R". For any p € R", show that O,, defined
as a ring of germs of smooth functions, is a local ring with maximal ideal m,, the ideal of germs vanishing
at p.

Let 0 € O, be some germ over p, represented by a smooth function f: U — R with U > p open, and f not
vanishing at p. (Henceforth we will denote this by o = [f],.)

Then since f is smooth and non-vanishing at p, there is some open nbd V' C U of p supporting f. Note that
[fIv]p = [f]p, by definition of germ equivalence. Thus, we can define g € Oy by g(z) = f~!(z), and this is
well defined.

Finally, consider the germ [g], € O,. Since g - f|y = 1, we have [f], - [g], =1 € O,.

Thus every germ over p that does not vanish at p is invertible, and m,, is the unique maximal ideal as desired.

Let (X, Topy) be a topological space, with Topy considered as the poset category of open sets of X. Show
that a presheaf of sets over X is precisely a contravariant functor from 7Topy to Set

The data of a functor F: Top% — Set is a set F(U) associated to each open set U € Topy, and a function
Fvu: F(V) — F(U) for each inclusion U C V. This is precisely the same data as a pre-sheaf F of sets
over (X, Topy).

For this data to form a functor is to require the identity U C U to map to the identity function, and to
require the composition U C V' C W to map to Fyw,y = FV,U o FW, V. Again, these are precisely the same
conditions required for F to form a presheaf.

Show that the following are pre-sheaves on C, but not sheaves.
(a) Bounded functions.

(b) Holomorphic functions admitting a holomorphic square root.

(a) Define F: Topd — Set by sending each complex open set U C C to the set of bounded functions
on U. The restriction maps Fy,y: F(V) — F(U) are true restrictions f — f|y. Function restriction
respects composition, i.e. (f\v) v = flu, hence F defined in this way is a functor, and thus a pre-sheaf.
To see that it is not a sheaf, note that an unbounded function may be bounded over every set in some
open cover. (Perhaps bounded functions never form a sheaf on a non-compact space?)

For example, the norm function over C is bounded on restriction to any open cover of C by bounded
opens, but is not bounded over all of C.

(b) Now define F: Top’ — 8et by sending each complex open U to the set of holomorphic functions
with holomorphic square root. Again, send each inclusion U C V to the true restriction map. Since
being holomorphic is a local property, it is preserved by restriction to open subsets, and thus this is
well-defined. (Also note that the restriction of a square root will be a square root for the restriction.)
However, we may consider the identity map z — z. This does not have a holomorphic square root (or
even a continuous square root), however, over any open set that does not contain a chosen ray from the
origin, the restriction of z has a square root (a chosen branch cut). Thus, we can cover C with open sets
where the restriction of z has a homolorphic square root, but we cannot glue those sections together.

Thus, this does not form a sheaf over C.

Interpret the identity and gluing axioms of a sheaf F as saying that F(U;crU;) is a certain limit.

Consider a sheaf of sets F over some space X. Let U be open in X, with some open cover {U;};c; for some
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indexing set I.

Then, consider the power set P(I) as a poset category by inclusion, with J — J’ when J C J’. Consider
the diagram of sets D;: P(I) — Set sending each subset of indices J to ]—'(ﬂjeJ Uj), and each inclusion
J — J’ to the restriction map.

J ]:(mjeJUj)
J ]:(ﬂjE U-)

The bottom of this diagram then looks like

F(Ui) Uj)

\)/H\/
T

F(Uk)

J 7
FU;NU;, FU; NU)

/

FU;NU; N U)

We claim that F(U) is the limit in Set over this diagram.

The cone is given by the restriction maps F(U) — F(Uy) for each J C I. By the definition of a pre-sheaf,
these commute with the diagram functions, which are all also restriction maps.

To see that this is the universal cone, consider another cone ¢;: Z — F(U;).

K////////f(lfL\\\\\\\\N
F(Ui) F(U;) F(Uk)
F(U; N Uy ) F(U; NUy)
For each z € Z, denote z; = ¢;(z). Then since these sections agree on restriction, z;|v,nu;, = 2;|u,nu, for

each 4, j € I, gluing induces some section ¢(z) € F(U) such that for all i € I, ¢(2)|y, = 2.

Define ¢: Z — F(U) by z — ¢(z) as so. Finally, an application of identity shows that this is unique, since
if o: Z — F(U) is any other map commuting with the restriction maps, then ¢(2)|y, = ¢(z)|y, for all
t € I, and hence ¢ = ¢.

(a) Verify that smooth functions, continuous functions, real-analytic functions, and real-valued functions
on a manifold or on R™ form a shead.

(b) Show that real-valued continuous functions on open sets of a topological space form a sheaf.

... Seems boring.

Yeah, the pre-sheaves are given by the states sets. Restriction is given by true restriction. All of the
properties are local in the sense that they both respect restriction, and may be determined by checking them
on any cover. Real functions always glue together uniquely from their restrictions since they are determined
pointwise.

Let S be any set, and let F(U) be the set of maps U — S which are locally constant. Show this is a sheaf.

Equivalently, let F(U) be the maps U — S which are continuous when S is endowed with the discrete
topology so that every subset is continuous.
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We take the following definition of locally constant.
FU)={f:U—S|v¥peS [ (p) € Topx}

Since this assigns to each open set a family of functions on it, with the restriction maps being the standard
restriction maps of functions, the pre-sheaf structure and identity are both trivial.

To observe identity, consider some cover U; — U, then take sections f,g: U — S such that f; = g; for all
i € I (where f; .= f|u, and g; == g|y,). Then for any x € U, x € U; for some ¢, and f(x) = f;i(x) = ¢g;(x) =
g9(x).

To show gluing, take some family f; € F(U;) such that they agree on intersections, that is,

V’L,] € Ivfi

vinu; = filvinu, -

Since these are functions on U; which agree on intersections, they glue together into a function on U.
f:U—S, x> fi(x) where z€U;.
It remains to show that this is locally constant. Take any p € S. Then
') ={z U] flx) =p}
={zecU|Viel,peU; = fi(z)=p}
= U I ;1 (p)
icl

Which is a union of open sets since each f; is locally constant. Thus, f is locally constant, and the compatible

fi sections glue together.
Thus, the locally constant functions form a sheaf.

Let X,Y be any topological spaces. Show that continuous maps to Y forms a sheaf of sets on X.

Again, the pre-sheaf structure is immediate because we are assigning to each U, a family of functions on U,
with the standard restriction maps.

Identity is also immediate, by the same reason as the previous exercise.

Gluing is almost immediate since continuity is determined locally. Let U; < U be an open cover of some
open U C X. Then let f; € F(U;) be continuous functions to Y agreeing on intersections in the usual way.
Define f: U — Y as in the previous question, with f(x) = f;(z) for ¢ € I such that x € U;. Well defined
since the functions agree on intersections.

Then f is continuous since for each x € U, it has a neighbourhood U; where it is continuous. Explicitly, if
V CY is open, then f~1(V) = Uier £ 1(V)) which is open by assumption.

Let X,Y be topological spaces.
(a) Let u: Y — X be continuous. Show that section of y form a sheaf. Explicitly, to each U open in X,
assign the family of continuous maps s: U — Y such that the following commutes.

U—5y £ Xx
’Ld‘U

(b) If Y additionally has the structure of a topological group, show that the continuous maps to Y form a
sheaf of groups.

(a) We first confirm that restriction is well defined. Take some section s: U — Y, and some open subset
U’ < U. Then s|y- is defined by precomposing s with the inclusion.

id|y

U5y 25X

14
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Thus p o sy = (id|y)|v = id|y+. This shows that restriction of sections of u is well defined, and thus
sections of p do form a pre-sheaf.
Identity is as usual trivial since we are working with functions, determined pointwise.

For gluing, take a family s;: U; — Y which agree on intersections, and then define s: U — Y to be
the unique function agreeing with the s; on restriction. Then we have

U; NU;

S

U

™~
\Y
\

\/\

)
«—

b

It remains to show that s is a section. Take any = € U, then x € U; for some i € I, and po s(z) =
o s;(x) = x. Thus, yes, the compatible s; glue together into a section s, and we have shown that
sections of p form a sheaf

Now assume that Y is a topological group. That is, that it has a continuous multiplication operation
x:Y xY — Y, and the inverse (—)71: Y — Y is also continuous. We have already shown that
continuous maps to Y form a group. It remains to show that the sets of sections form a group structure,
and that restriction is a group homomorphism.

To see the first, take two sections f,g: U — Y. Since these are continuous maps, there is an induced
map (f,g9): U — Y x Y. We may then post-compose this with multiplication to get f x g: U —
YxY —Y.

Similarly, we may define an inverse function (under this operation) as

_\—1
ULYLY

f

Of course, these are just applying the operation and inverse point-wise, but these constructions make
it clear that f x g and f are well-defined continuous maps.

To see that restriction is a group homomorphism, note that it is the same as precomposing the first
diagram above with the relevant inclusion.

U —— U -=-= >Y><Y—>Y
glys

By universal property of the product, we have (f, g)|vr = (f|vr, glv7), and thus flor x gl = (f x g)|v--
Thus Hom(—,Y") forms a sheaf of groups on X as desired.

Let m: X — Y be a continuous map. Assume F is a pre-sheaf on X. Then define a new pre-sheaf 7, F on
Y, called the pushforward of F by m, by m.F(V) = F(7—1(V)), for open V in Y.
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Show that m,F is a pre-sheaf, and show it is a sheaf when F is.

Note that since 7 is a continuous map, 7= ! defines an inclusion preserving map from open sets of Y to open
sets of X. That is, 71 is a functor Topy — Topy. m.F is precisely the composition of F with (the dual

of) this functor.
1

Toy
Topy —=— Top¥ —Z 5 Set

TuF
Thus, by the contravariant functor description, m,F is a pre-sheaf.
Now, assume that F is furthermore a sheaf. We shall show that m,.F is also a sheaf. Take some open V' in

Y, and some cover V; — V as usual.
To show identity, take f,g € m. F(V) = F(x~1(V)), such that

(M F)vv, (f) = Frrqymrvi) (f) = Frr(v)m1vi)(9) = (M F)vvi(9)-

Then by identity of F, we have f = g as sections over 7~ 1(V), and then hence as sections over V.
To show gluing, take f; € F(m~1(V;)), agreeing when restricted to V; N'V;. That is,

Frrwymrvinvy) (fi) = (M F)vi viaw; (fi) = (TeF)vi vinv; (90) = Fr1viy o1 (vinvy) (fi)-

Noting that since {V;} is a cover of V, then {m~1(V;)} is a cover of 71 (V), and n=1(V; N V;) = == (V;) N
7~ 1(V}), then gluing in F yields a section f € F(r~1(V)) = m. F(V).

This, if F is a sheaf on X, then the pushforward of F over any continuous map X — Y is also a sheaf on
Y, as desired.

Let m: X — Y be a continuous map of spaces, and F be a sheaf on X. if w(p) = ¢ for some p € X, describe
the natural morphism (m,F)q — Fp.

We first define the map explicitly. Take some germ [f], in (7.F),, with f € (7.F)(V) a section over some
open V' 3 ¢. Then by the definition of the sections in the pushforward sheaf, f € (7.F)(V) = F(x=1(V)),
thus f is also an element of the set of sections of F over the open nbd 7~ !(V) of p. Thus, we can define
[f]p € Fp, the germ of f over p. The induced map on stalks may then be expressed simply as [f]q — [f]p-
Alternatively, we can induce the map using the universal property of the stalks.

—1
T
op q op
Topy |g » Top¥ |p

l l

-1
TopyY ——— Top¥ —F 5 Set

Here Topy |, denotes the full subcategory of Topy consisting of open sets containing ¢, and analagously

for Top¥ |,

The stalk F, is then the colimit over the diagram Top% |, — Top% — Set, and the stalk (m.F), is the

colimit over the diagram Topy’ |, — Topy? — Top%¥ — Set.

Lemma 1 then induces the desired map by universal property of colimit.

If (X,Ox) is a ringed space, and F is an Ox-module, describe how for each p € X, F), is an Ox ,-module.

We shall describe the action explicitly. Let p € X, and consider F,. We already know this retains the
structure of an abelian group, since the category of abelian groups has colimits. To define the action of
Ox p, let [f]p, € Oxp and [a], € F, where f and a are sections of their respective sheaves over some shared
neighbourhood U > p (restricting if necessary).

Then define [f], - [a], to be [f - a], using the action of Ox (U) on F(U). To see that this is well defined, let
[f1p = [f'], and [a], = [a'], where f’,a’ are defined over another neighbourhood V' of p.

Since they determine the same germ, there are some Wy, Wy around p where flw, = f'|w, and alw, = ayy,.
Defining W = W; N Wy, we can finally put everything into the same neighbourhood, so that flw = f'|w
and a|W = a’|W.
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Then the compatibility condition for the O x-module F says that (f-a)|w = flw-alw = fiy-d'|lw = (f"-a’)|lw.
Thus [f - a]p, = [f' - d/]p, and this definition of action on stalks is well defined.

Finally, note that all the axioms of module action may be determined with a finite number of elements, and
we may thus check them by taking representatives on some shared neighbourhood of p, where the axioms
hold by the definition of an Ox-module.

Let ¢: F — G be a morphism of pre-sheaves on X, and let p € X. Then describe the induced morphism
of stalks ¢p,: F, — Gp.

This defines the stalkification functor at p Setx — Set, where Setx is the category of sheaves of sets over
X.

This follows immediately from Lemma 2, since ¢ induces a natural transformation between the stalk diagrams
for F, and G,,.

Let m: X — Y be a continuous map of topological spaces. Show that the pushforward induces a functor
Ty - SetX — Sety.

Recall that 7, F is pre-composition with 7r0_p1. Then we can describe the desired functor as

]:*—>7T*]::}—O7T;p1

ﬂ'r] ﬂnoid —1
Top
G —— mG=Gom,,

-1

op » and on morphisms it acts as pre-composition by (the

That is, on objects it acts as pre-composition by
natural transformation) Z’dﬂ_o—pl

Let F and G be two sheaves over X. Define a pre-sheaf of sets Hom(F,G) by lettings the set of sections
over each open U be
Hom(F,G)(U) := Mor(F|y,Glu)-

Show that this is a sheaf of set on X.

We first observe that for any U open in X, the sections of Hom(F,G) over U are defined to be the set of
natural transformations 7 in the diagram below. The restriction of a section n to some open V' C U is then
a composition of 7 with the (identity transformation on the) inclusion of Top{¥ — Top{d

Top¥

PRI

Topy —— Topf n Set

~ A

Top¥

Pre-composition is functorial, and so Hom(F, G) does form a presheaf of sets.

Next, we need to show that it is also a sheaf. We first consider identity, in the usual way. Let U be open in
X, and take an open cover U = UZ—GI U;. Let n,e: Fly = Gu, such that n|y, = €|y, for all i € I. We claim
that n = . To see this, take any open V C U, and define the cover V; =V NU; of V. Then:

nv, = (lv)v, = (elv)v, = ev;-
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We have the following diagram.
Flo(V) == Glu(V)

l l

Flo(Vi) o Glu (Vi)

[ [

Flo(V) — Glu(V)

Here the vertical maps are restriction maps, and both squares commute. Chasing any section f € Fly(V),
we see that

(v (FDlvi = nvi(flvi) = evi(flvi) = (ev(f))lvi-

Since V; forms a cover of V', identity in the sheaf G then tells us ny = ey. Since V' was arbitrary, this means
that n = ¢ as desired.

Finally, we demonstrate gluing. Let U; form a cover of U as above, and let *: F
such that they agree when restricted to intersections, that is,

U, = Q|Ul in /HOHI(]:7 g)(Ul),

YW CU;NU;, ny = (n'

Take any V open in U, and as before define the cover V; = V NU; of V. We define a gluing n: Fly = Glu
by defining it on the arbitrary component V.

V) 2 )

v, nv;

F

Taking any section f € F(V) = Fly(V), define g; = nj, (f|v;) € G(Vi). Then

gilvinv, = 0y, (Flv) lviav; = ey, (Flviaw;) = v, (Flviavs) =m0, (Flv)lviev, = gjlviav; -

Thus {g; }ier is a family of sections of G over V; which agree upon restriction to intersections. Since G was
assumed a sheaf, it satisfies gluing, and there is thus some g € G(V') such that g|v, = g;.

We define ny (f) = g.

Thus, Hom(F, G) is a presheaf satisfying both identity and gluing, and is thus a sheaf, as desired.

(a) Let F be a sheaf of sets on X. Show that Hom({p}, F) = F, where {p} is the constant sheaf with
values in {p}.

(b) Let F be a sheaf of abelian groups on X. Show that Hom 4, (Z, F) = F in the category of sheaves of
abelian groups.

(¢) Let F be an Ox-module. Show that Hom M odo (Ox,F) = F in the category of Ox-modules.

(a) We first consider the sheaf {p}. Take any U open in X, then the sections {p}(U) are the functions
f: U — {p} such that f~%(p) is open. That is, {p}(U) is the single-element set *. The restrictions
are then the trivial map * — . o
Now, consider Hom({p}, F). The sections of this sheaf hom over U are the natural transformations
{p}lv — Flu. However, such a natural transformation is precisely the choice of an element of F(U).
Note that although the natural transformation describes a map * — F(V) for every open set V C U,
the natural transformation diagram ensures that the chosen section over V is the restriction of the
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section over U, so the image of the U component does fully determine the transformation.

x —— F(U)

[
« —— F(V

)

This then defines a natural transformation Hom({p}, F) = F, which is isomorphic on components and
is thus a natural isomorphism as desired.

(b) Next we consider Z, the constant sheaf on Z. For U open in X, the sections over U are functions
f: U — Z such that f~!(n) is open in U for each n € Z.
The group structure on Z(U) is given by pointwise addition, that is, (f 4+ ¢)(z) = f(x)+g(z) € Z. This
is well-defined since for any n € Z,

(f+9) )= |J fH@ng ().

a+b=n

Unlike in the previous part, Z(U) now has more than a single element. However, we shall show that
each n € Hom(Z|y, F|v) is still fully determined by where a single function in Z(U) is sent. For n € Z,
let nV: V — 7Z denote the function in Z(V) sending every point to n. Let o = 1y (1Y).

Now, take any f € Z(U). Then for each n, by definition, U, := f~!(n) is open in U. Restricting, we
have the following two diagrams.

fr—nu(f) 1V ——0
Y —— (o, 1" —— ol
Since 7y, is a group homomorphism, we have
n(Nlo, =no, (@) =n-nu, (1) =n-oly,

Thus the restrictions of ny (f) to the cover U, of U are fully determined by the values of o|y, . Since F
is a sheaf, we then have that ny (f) itself is fully determined by o, and thus we have a correspondence
between Hom(Z|y, Flv) and F(U) as desired.

If : F — G is a morphism of presheaves, the presheaf kernel ker,,.(¢) is defined by (kerp,. ¢)(U) =
ker ¢(U)
Show that the presheaf kernel defined in this way is a presheaf.

Show that the presheaf cokernel satisfies the universal property of cokernel.
Show that F — F(U) is an exact functor AbY© — Ab.
Show that a sequence of presheaves

00— F1 — Fo—----F, — 0.

is exact if and only if
0— FHU) — FU) —...— F,(U) —0.

is exact for all U.

Assume ¢: F — G is a morphism of sheaves. Show ker,,. ¢ is a sheaf, and satisfies the universal property
of kernels in the category of sheaves.

Take X to be C with the standard topology, and let Ox be the sheaf of holomorphic functions. Let F be the
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presheaf of functions on X admitting a holomorphic logarithm. Show that the follow sequence of preshaves
is exact
0—Z—0x —F—0.

Here Z — Ox is the natural inclusion, and Ox — F is given by f — exp(2wif).

Show that even though F is a presheaf cokernel of a morphism of sheaves, F is not a sheaf itself.
Question 22

Prove that a section of a sheaf of sets is determined by its germs, i.e., the natural map

FU)— [ %
peU
is injective.
Question 23
Call a family of germs over an open set U compatible if they are locally the germs of some cover of U.
Formally, say that (sp)peu is a compatible family of germs if for each p € U, there is some neighbourhood
U, > p where for some section t € F(Up,) over that neighbourhood, t, = s, for all g € U,.
Question 24
If ¢1 and ¢, are morphisms from a presheaf of sets F to a sheaf of sets G that induce the same maps on
each stalk, show that ¢1 = ¢s.
Question 25
Show that a morphism of sheaves of sets is an isomorphism if and only if it induces an isomorphism of all
stalks.
Question 26

(a) Show that F(U) — [[,cy Fp need not be injective if F is not a sheaf.
(b) Show that morphisms are not determined by stalks for general presheaves.

(¢) Show that isomorphisms are not determined by stalks for general presheaves.

Question 27
Show that sheafification is unique up to unique isomorphism, assuming it exists. Show that F is a sheaf,
then the sheafification is id: F — F.
Question 28
Show that sheafification is a functor from presheaves on X to sheaves on X.
Question 29
Show that F*" forms a sheaf.
Question 30
Describe a natural map of presheaves sh: F — F5"
Question 31
Show that the sheafification functor is left-adjoint to the forgetful functor from sheaves on X to presheaves
on X.
Question 32
Show F — F*" induces an isomorphism of stalks.
Question 33
Suppose ¢: F — G is a morphism of sheaves of sets on X. Show that the following are equivalent.
(a) ¢ is a monomorphism in the category of sheaves.

(b) ¢ is injective on the level of stalks, i.e. ¢,: F, — G, injective

(c) ¢ is injective on the level open sets.
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