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1 Chapter 2

Question 1

Let OX be the pre-sheaf of smooth real-valued functions on X = Rn. For any p ∈ Rn, show that Op, defined

as a ring of germs of smooth functions, is a local ring with maximal ideal mp, the ideal of germs vanishing

at p.

Answer 1

Let σ ∈ Op be some germ over p, represented by a smooth function f : U −→ R with U ∋ p open, and f not

vanishing at p. (Henceforth we will denote this by σ = [f ]p.)

Then since f is smooth and non-vanishing at p, there is some open nbd V ⊆ U of p supporting f . Note that

[f |V ]p = [f ]p, by definition of germ equivalence. Thus, we can define g ∈ OV by g(x) = f−1(x), and this is

well defined.

Finally, consider the germ [g]p ∈ Op. Since g · f |V = 1, we have [f ]p · [g]p = 1 ∈ Op.

Thus every germ over p that does not vanish at p is invertible, and mp is the unique maximal ideal as desired.

Question 2

Let (X, T opX) be a topological space, with T opX considered as the poset category of open sets of X. Show

that a presheaf of sets over X is precisely a contravariant functor from T opX to Set

Answer 2

The data of a functor F : T opopX −→ Set is a set F(U) associated to each open set U ∈ T opX , and a function

FV,U : F(V ) −→ F(U) for each inclusion U ⊆ V . This is precisely the same data as a pre-sheaf F of sets

over (X, T opX).

For this data to form a functor is to require the identity U ⊆ U to map to the identity function, and to

require the composition U ⊆ V ⊆ W to map to FW,U = FV,U ◦FW,V . Again, these are precisely the same

conditions required for F to form a presheaf.

Question 3

Show that the following are pre-sheaves on C, but not sheaves.
(a) Bounded functions.

(b) Holomorphic functions admitting a holomorphic square root.

Answer 3

(a) Define F : T opopC −→ Set by sending each complex open set U ⊆ C to the set of bounded functions

on U . The restriction maps FV,U : F(V ) −→ F(U) are true restrictions f 7→ f |U . Function restriction

respects composition, i.e.
(
f |V

)
|U = f |U , hence F defined in this way is a functor, and thus a pre-sheaf.

To see that it is not a sheaf, note that an unbounded function may be bounded over every set in some

open cover. (Perhaps bounded functions never form a sheaf on a non-compact space?)

For example, the norm function over C is bounded on restriction to any open cover of C by bounded

opens, but is not bounded over all of C.

(b) Now define F : T opopC −→ Set by sending each complex open U to the set of holomorphic functions

with holomorphic square root. Again, send each inclusion U ⊆ V to the true restriction map. Since

being holomorphic is a local property, it is preserved by restriction to open subsets, and thus this is

well-defined. (Also note that the restriction of a square root will be a square root for the restriction.)
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However, we may consider the identity map z 7→ z. This does not have a holomorphic square root (or

even a continuous square root), however, over any open set that does not contain a chosen ray from the

origin, the restriction of z has a square root (a chosen branch cut). Thus, we can cover C with open sets

where the restriction of z has a homolorphic square root, but we cannot glue those sections together.

Thus, this does not form a sheaf over C.

Question 4

Interpret the identity and gluing axioms of a sheaf F as saying that F(∪i∈IUi) is a certain limit.

Answer 4

Consider a sheaf of sets F over some space X. Let U be open in X, with some open cover {Ui}i∈I for some

indexing set I.

Then, consider the power set P(I) as a poset category by inclusion, with J −→ J ′ when J ⊆ J ′. Consider

the diagram of sets Di : P(I) −→ Set sending each subset of indices J to F
(⋂

j∈J Uj

)
, and each inclusion

J −→ J ′ to the restriction map.

J F
(⋂

j∈J Uj

)
J ′ F

(⋂
j∈J′ Uj

)
The bottom of this diagram then looks like

F(Ui) F(Uj) F(Uk)

F(Ui ∩ Uj) F(Uj ∩ Uk)

F(Ui ∩ Uj ∩ Uk)

We claim that F(U) is the limit in Set over this diagram.

The cone is given by the restriction maps F(U) −→ F(UJ) for each J ⊆ I. By the definition of a pre-sheaf,

these commute with the diagram functions, which are all also restriction maps.

To see that this is the universal cone, consider another cone ϕi : Z −→ F(Ui).

Z

F(U)

F(Ui) F(Uj) F(Uk)

F(Ui ∩ Uj) F(Uj ∩ Uk)

For each z ∈ Z, denote zi = ϕi(z). Then since these sections agree on restriction, zi|Ui∩Uj
= zj |Ui∩Uj

for

each i, j ∈ I, gluing induces some section ϕ(z) ∈ F(U) such that for all i ∈ I, ϕ(z)|Ui
= zi.

Define ϕ : Z −→ F(U) by z 7→ ϕ(z) as so. Finally, an application of identity shows that this is unique, since

if φ : Z −→ F(U) is any other map commuting with the restriction maps, then φ(z)|Ui = ϕ(z)|Ui for all

i ∈ I, and hence φ = ϕ.

Question 5

(a) Verify that smooth functions, continuous functions, real-analytic functions, and real-valued functions

on a manifold or on Rn form a shead.

(b) Show that real-valued continuous functions on open sets of a topological space form a sheaf.

Answer 5

... Seems boring.
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Yeah, the pre-sheaves are given by the states sets. Restriction is given by true restriction. All of the

properties are local in the sense that they both respect restriction, and may be determined by checking them

on any cover. Real functions always glue together uniquely from their restrictions since they are determined

pointwise.

Question 6

Let S be any set, and let F(U) be the set of maps U −→ S which are locally constant. Show this is a sheaf.

Equivalently, let F(U) be the maps U −→ S which are continuous when S is endowed with the discrete

topology so that every subset is continuous.

Answer 6

We take the following definition of locally constant.

F(U) = {f : U −→ S | ∀p ∈ S, f−1(p) ∈ T opX}

Since this assigns to each open set a family of functions on it, with the restriction maps being the standard

restriction maps of functions, the pre-sheaf structure and identity are both trivial.

To observe identity, consider some cover Ui ↪→ U , then take sections f, g : U −→ S such that fi = gi for all

i ∈ I (where fi := f |Ui
and gi := g|Ui

). Then for any x ∈ U , x ∈ Ui for some i, and f(x) = fi(x) = gi(x) =

g(x).

To show gluing, take some family fi ∈ F(Ui) such that they agree on intersections, that is,

∀i, j ∈ I, fi|Ui∩Uj = fj |Ui∩Uj .

Since these are functions on Ui which agree on intersections, they glue together into a function on U .

f : U −→ S, x 7→ fi(x) where x ∈ Ui.

It remains to show that this is locally constant. Take any p ∈ S. Then

f−1(p) = {x ∈ U | f(x) = p}
= {x ∈ U | ∀i ∈ I, p ∈ Ui =⇒ fi(x) = p}

=
⋃
i∈I

f−1
i (p)

Which is a union of open sets since each fi is locally constant. Thus, f is locally constant, and the compatible

fi sections glue together.

Thus, the locally constant functions form a sheaf.

Question 7

Let X,Y be any topological spaces. Show that continuous maps to Y forms a sheaf of sets on X.

Answer 7

Again, the pre-sheaf structure is immediate because we are assigning to each U , a family of functions on U ,

with the standard restriction maps.

Identity is also immediate, by the same reason as the previous exercise.

Gluing is almost immediate since continuity is determined locally. Let Ui ↪→ U be an open cover of some

open U ⊆ X. Then let fi ∈ F(Ui) be continuous functions to Y agreeing on intersections in the usual way.

Define f : U −→ Y as in the previous question, with f(x) = fi(x) for i ∈ I such that x ∈ Ui. Well defined

since the functions agree on intersections.

Then f is continuous since for each x ∈ U , it has a neighbourhood Ui where it is continuous. Explicitly, if

V ⊆ Y is open, then f−1(V ) =
⋃

i∈I f
−1
i (V ) which is open by assumption.

Question 8

Let X,Y be topological spaces.

(a) Let µ : Y −→ X be continuous. Show that section of µ form a sheaf. Explicitly, to each U open in X,

assign the family of continuous maps s : U −→ Y such that the following commutes.

U Y Xs

id|U

µ

(b) If Y additionally has the structure of a topological group, show that the continuous maps to Y form a

sheaf of groups.
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Answer 8

(a) We first confirm that restriction is well defined. Take some section s : U −→ Y , and some open subset

U ′ ↪→ U . Then s|U ′ is defined by precomposing s with the inclusion.

U Y X

U ′

s

id|U

µ

s|U′

Thus µ ◦ s|U ′ = (id|U )|U ′ = id|U ′ . This shows that restriction of sections of µ is well defined, and thus

sections of µ do form a pre-sheaf.

Identity is as usual trivial since we are working with functions, determined pointwise.

For gluing, take a family si : Ui −→ Y which agree on intersections, and then define s : U −→ Y to be

the unique function agreeing with the si on restriction. Then we have

Ui ∩ Uj

Ui Uj

U

Y Y

X X

si sj

s s

µ µ

It remains to show that s is a section. Take any x ∈ U , then x ∈ Ui for some i ∈ I, and µ ◦ s(x) =

µ ◦ si(x) = x. Thus, yes, the compatible si glue together into a section s, and we have shown that

sections of µ form a sheaf

(b) Now assume that Y is a topological group. That is, that it has a continuous multiplication operation

× : Y × Y −→ Y , and the inverse (−)−1 : Y −→ Y is also continuous. We have already shown that

continuous maps to Y form a group. It remains to show that the sets of sections form a group structure,

and that restriction is a group homomorphism.

To see the first, take two sections f, g : U −→ Y . Since these are continuous maps, there is an induced

map (f, g) : U −→ Y × Y . We may then post-compose this with multiplication to get f × g : U −→
Y × Y −→ Y .

Y

U Y × Y Y

Y

f

g

(f,g) ×

Similarly, we may define an inverse function (under this operation) as

U Y Y
f

f̄

(−)−1

Of course, these are just applying the operation and inverse point-wise, but these constructions make

it clear that f × g and f̄ are well-defined continuous maps.

To see that restriction is a group homomorphism, note that it is the same as precomposing the first
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diagram above with the relevant inclusion.

Y

U ′ U Y × Y Y

Y

f |U′

g|U′

f

g

(f,g) ×

By universal property of the product, we have (f, g)|U ′ = (f |U ′ , g|U ′), and thus f |U ′ ×g|U ′ = (f ×g)|U ′ .

Thus Hom(−, Y ) forms a sheaf of groups on X as desired.

Question 9

Let π : X −→ Y be a continuous map. Assume F is a pre-sheaf on X. Then define a new pre-sheaf π∗F on

Y , called the pushforward of F by π, by π∗F(V ) = F(π−1(V )), for open V in Y .

Show that π∗F is a pre-sheaf, and show it is a sheaf when F is.

Answer 9

Note that since π is a continuous map, π−1 defines an inclusion preserving map from open sets of Y to open

sets of X. That is, π−1 is a functor T opY −→ T opX . π∗F is precisely the composition of F with (the dual

of) this functor.

T opopY T opopX Set
π−1
op

π∗F

F

Thus, by the contravariant functor description, π∗F is a pre-sheaf.

Now, assume that F is furthermore a sheaf. We shall show that π∗F is also a sheaf. Take some open V in

Y , and some cover Vi ↪→ V as usual.

To show identity, take f, g ∈ π∗F(V ) = F(π−1(V )), such that

(π∗F)V,Vi
(f) = Fπ−1(V ),π−1(Vi)(f) = Fπ−1(V ),π−1(Vi)(g) = (π∗F)V,Vi

(g).

Then by identity of F , we have f = g as sections over π−1(V ), and then hence as sections over V .

To show gluing, take fi ∈ F(π−1(Vi)), agreeing when restricted to Vi ∩ Vj . That is,

Fπ−1(Vi),π−1(Vi∩Vj)(fi) = (π∗F)Vi,Vi∩Vj
(fi) = (π∗F)Vi,Vi∩Vj

(gi) = Fπ−1(Vi),π−1(Vi∩Vj)(fi).

Noting that since {Vi} is a cover of V , then {π−1(Vi)} is a cover of π−1(V ), and π−1(Vi ∩ Vj) = π−1(Vi) ∩
π−1(Vj), then gluing in F yields a section f ∈ F(π−1(V )) = π∗F(V ).

This, if F is a sheaf on X, then the pushforward of F over any continuous map X −→ Y is also a sheaf on

Y , as desired.
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